Attitude Control of the Space Shuttle: A Retrospective
Example on Model-Based Design and Verification Processes *

Raphael Cohen!~2, Hamza Bourbouh?3, Guillaume Brat®, Eric Feron', and Pierre-Loic Garoche?—3

! Georgia Institute of Technology, GA 30322, USA
2 Onera — The French Aerospace Lab, Toulouse, France
3 NASA Ames Research Center

Abstract. In the past years, Software has been one of the areas of engineering with the biggest
impact on systems performance. For the aeronautical and aerospace industries, an important
part of both the cost and the innovations are software related. Modern tools, programming lan-
guages and development techniques have emerged, letting the possibility to design bigger and
more complex software systems faster. Thus, Software are growing in complexity and its devel-
opment cycle is evolving through time. In this article, we revisit a famous system, the attitude
control of the NASA Space Shuttle as described in a 1982 document by Draper Laboratory. At
that time model based design, code generation and formal methods were not developed as they
are now. Here we propose the redesign that system using modern tools and showing how model-
based design and formal verification can be applied on realistic system. This paper presents
the structure of the control and its implementation as a Simulink model fitted with formalized
specifications. We also present analysis result of the Simulink-based analyzer CoCoSim.

Keywords: Simulink - Software Verification - SMT Solvers - Model-Based Design - Code gen-
eration - Control System - CocoSim

1 Revisiting the Space Shuttle Attitude and Orbital Control System with
Model-based Design and Formal Verification

We discovered a gem: a 35 years old unclassified report from Draper Lab detailing the Attitude
and Orbital Control System (AOCS) of the famous Space Shuttle. We propose here to revisit its
design following a modern model-based development relying on auto-coding and early uses of formal
verification.

This article gives a brief overview of the model and the verification activities performed. A more
complete access to the report, the produced model and the identified and formalized requirements can
be found at https://cavale.enseeiht.fr/spaceshuttlel

We relied on Matlab Simulink to perform the initial design and then refine the model to fit with our
CoCoSim toolbox supporting code generation and formal verification. In contrary to other approaches
that search to prove that the compilation preserves faithfully the original semantics |2, 9], we rather
believe that formal methods will find their ways in the industry practice when it will complement
existing development process, which are, nowadays, largely based on code generation from dataflow
models, ie. the DO-178 qualified compiler KCG for Scade or the Embedded Coder for Matlab Simulink.

Our proposal relies on the formalization of requirements as model components, a natural language
for the control system practitioner, and the use of model-checking to check early the validity of these
requirements, without the need to wait for the final code to be produced. Such requirements ought to
be compiled throughout the development process and revalidated at any stage.

Researchers in formal verification always look for realistic examples of control systems since in-
dustry hardly shares its own models. As an example the NASA TCM [3] was design to share such a

* The work was partially supported by project ANR-17-CE25-0018.

https://cavale.enseeiht.fr/spaceshuttle

2 R. Cohen, H. Bourbouh, G. Brat, E. Feron and P.-L. Garoche

model. Unfortunately, while mimicking a realistic development process and sharing with the commu-
nity a complex example, it lacked the full documentation typically associated to such a development.
In industry these documentation, the specification, drive all the development.

In this specific case we are given with this initial specification of the Space Shuttle AOCS and
we use it to illustrate the advances of model-based design and formal verification. We hope that the
community will gather around it and use it to compare approaches or relative efficiencies of technical
proposals.

The paper is structured as follows. The next section presents key elements of the Space Shuttle
AQOCS. Then, in Section [3] we illustrate on a single requirement our formalization, at model level,
of the specification document. Then Section [4] addresses the required transformations needed by our
toolbox as well as early results on the formalized requirements while Section [5| concludes.

2 Space Shuttle Attitude Control as a Simulink Model

Simplified Digital Autopilot (SDAP) Ezecutive. Fig. presents the different modes in which the
Simplified Digital Autopilot (SDAP) of the Space Shuttle can operate. Each of them is described in
the specification document and is modeled as a Simulink component. The most complex one being the
“AUTO MANEUVER?” sub-mode within the “AUTO” mode. Its architecture is depicted in Fig.

ATTITUDE

ROTATIONAL
PROCESSOR
MODES
[1
> STEERING STATE
AUTO MANUAL s MODULES ESTIMATOR|
£
8
l 5
.
I l g STATE
AUTO OPEN CLOSED a ERROR
MANEUVER LooP LOOP
J I PHASE
PLANE
DISCRETE
MANEUVER HOLD PULSE ACCEL e r
(a) Moding possibilities (b) Auto-Maneuver Modules architecture

Fig.1: SDAP Architecture

The SDAP executive will command and execute the software logic at a frequency of 12.5 Hz. After
collecting the current state from the IMUs (current attitude), the DAP, depending on the switches
values entered by the crew, will send appropriate commands to the actuators (jets) to bring about a
desired state. The crew can choose the behavior they desire using set via keyboard entries, and by
push-buttons moding discrete, such as the choices between primary /vernier jets and automatic /manual
attitude control mode. The Simulink model modeling the whole embedded architecture of the attitude
control software is presented in Fig. 2] In this Simulink model, a block is associated to each modules.

Auto Maneuwver Module. The Auto Maneuver module will allow the crew to perform attitude change
maneuvers or attitude hold depending on their need. The crew would enter to the computers a com-
manded inertial attitude and based on this desired attitude and the current one, the SDAP will execute
the appropriate maneuver. In order to execute the maneuver, this module, from the switches, crew
inputs, will compute the desired and current attitude and rate, using quaternions. Once those values
computed, they are sent to the phase plane module.

Attitude Control of the Space Shuttle with MBSE and Formal Verification 3

Phase Plane and Jet Selection Modules. The phase plane module represents the heart of the attitude
control feedback. For this, given the errors in attitude and rate, 6. and w, for each axis, an index
region is computed (as shown in Fig. . Then, based on this region and the controller state at the
previous time a variable called “ROTATION COMMAND?” is computed. The jet selection module,
from the “rotation command” value computed in the phase plane module, will compute 17 booleans
corresponding to the command sent to the primary jets (11 jets) and vernier jets (6 jets). Each selected
boolean variable will result in firing the associated jet for a time duration of 0.08 sec.

Rotational Dynamics — Plant. In order to model the closed-loop behavior of the Space Shuttle and to
do simulations we constructed a dynamical system of the plant, following the model presented in the
specification document appendices. For this, we used a simplified linear system. Let w the rotation
speed of t he space shuttle. we have the dynamics:

T=1w (1)

With: 7 the total moment acting on the vehicle, I the vehicle inertial matrix. Thus, after discretization,
we end up with the below relation, which will be the one implemented:

w=I"1.71 (2)

Aw=TI"'7-At=T1T"17.0.08 (3)

3 Expressing Requirements as Semantics Blocks

A key element to support formal verification of safety-critical software is the formal expression of the
specification. This step can be difficult in general when targeting the verification of imperative code,
for example the expression of the specification as ACSL [1] function contract for C code. However,
in the specific case of synchronous dataflow models, such as Matlab Simulink, Scade or Lustre, the
specification can be easily expressed in the model language as synchronous observers |7, [10]. Further-
more Assume-Guarantee contracts, ie. Hoare triples [8], can be lifted to dataflow semantics. CoCoSpec
contracts 4] provides such as extension for Lustre and can be expressed at Simulink level. A regu-
lar Simulink subsystem can be used to encode such contracts, building boolean signals to encode
Assume/Guarantee predicates.

We identified and labeled in the Space Shuttle report numerous sentences that could act as re-
quirements. Each of these requirements is then expressed as a Lustre CoCoSpec contract and can then
be expressed in the Simulink model.

Let us illustrate the approach on one specific requirement of the space shuttle. As mentioned above
two sets of thrusters are used to control the attitude of the Space Shuttle. The primary jets being
way more powerful than the vernier. We identified in the Jet selection module, at Section 3.8.2, the
Req.s3.8.2.p63.1 stating that “The two types of thrusters may not be used simultaneously”.

‘ y }7»{ x y H x y }—V x
_|_B_PREVIOUS

Initialization Memory Update Auto Manual Switch First Pass

> x y v

‘Attitude Processing Auto | Manual Maneuver State Error Call Phase Plane

Call Jet Select

Fig. 2: Main Simulink Model of the Embedded Software

4 R. Cohen, H. Bourbouh, G. Brat, E. Feron and P.-L. Garoche

s REGION 1 /
REGION 2 REGION 9 \

S5 REGION 3 s6 REGION 4

_ #SBIFgy<0
2 S6IFay >0

CENTER
OF MASS

REGION 8

0 REGION 6
REGION 5 \REGION 9

Fig.3: (a) Phase Plane switch lines and regions. (b) Body Frame of the Shuttle.

From this, we chose to represent this condition by the three properties below. The variables
“Vernier”, “Primary”, arrays of boolean of appropriate sizes, represent the state of the vernier and
primary jets.

(primary(l) OR ... OR primary(ll)) NAND (Vernier(l) OR ... OR Vernier(6)) (4)
(primary(l) OR ... OR primary(ll)) = vernierSW = ON (5)
(Vernier(l) OR ... OR Vernier(G)) = vernierSW = OFF (6)

The property [4] encodes the fact that only one kind of jet can be used at a time. Couples of jets
of the same type could be used simultaneously. Property [5| enforces that if one or more primary jet
are fired, the vernier switch has to be on. Finally, the property [6]is translating the same property but
for the vernier jets: if one or more vernier jets are fired, the vernier switch has to be off. These logical
statement are first expressed as CoCoSpec contract in Fig. [then as Simulink observers in Fig. [f|

(x Req Id: req_s3_8_2_p63_1
Text: The two types of thrusters may not be used simultaneously
Origin: Section 3.1 SDAP Executive, p63
Simulink Component Name: CallJetSelect.slx
Requirement PATH: "CallJetSelect/ PRIMARY VERNIER Req" *)
contract req_s3_8_2_p63_1 (PRIMARY_VERNIER_SW: bool;) returns (PRIMARY_JET_COMMAND:bool~11;
VERNIER_JET_COMMAND :bool"6;) ;

let
var is_primary : bool = (PRIMARY_JET_COMMAND[O] or ... or PRIMARY_JET_COMMANDI[10]);
var is_vernier : bool = (VERNIER_JET_COMMAND([O] or ... or VERNIER_JET_COMMANDI[5]1);
guarantee is_primary => PRIMARY_VERNIER_SVW;
guarantee is_vernier => not PRIMARY_VERNIER_SW;
guarantee is_primary NAND is_vernier;

tel

Fig. 4: Formalization of Req. Req.s3.8.2.p63.1 as a CoCoSpec contract.

4 Verifying specification using CoCoSiMm

CoCoSIM is an automated analysis and code generation framework for Simulink and Stateflow models.
It is based on a compiler architecture and provides means to compile the input Simulink model into
the synchronous dataflow language Lustre, used as an intermediate formal language. Once both the
model and its annotations blocks are expressed as Lustre and CoCoSpec contracts, respectively, one
can rely on Lustre analysis tools such as the model-checkers Kind2 [5] or Zustre [6]. This enables the
validation of the specification at model level.

Attitude Control of the Space Shuttle with MBSE and Formal Verification 5

boolean (11) boolean
2 A boolean boolean
1 A==B guarantee

Primary

Primary => vernierSW = guaranteel
boolean ry => vernierSW = ON

vernierSW

boolean boolean "
®mm(s) o] or boolean NAND guarantee valid ——»(1)

Vernier

guarantee2

an
guarantee

vernier => vernierSW = OFF guaranteed

validator

Fig. 5: Simulink Observer implementing Req. Req.s3.8.2.p63.1, preventing simultaneous use of jets

4.1 Rewrite the model as CoCoSIM compliant

The current implementation of CoCoSiM supports 100 Simulink blocks including about 20 blocks
that are simplified in the pre-processing step into basic blocks. In addition, inside our Simulink model
we used some of libraries from the Aerospace toolbox performing, for example, quaternion arithmetics
(such as Quaternion Multiplication, Quaternion Conjugate, etc). COC0OSIM supports these blocks as
these are masked-subsystems and the content of the subsystem is based on basic supported blocks.

Unsupported blocks. A first version of the model also relied on unsupported blocks such as Matlab
functions or Data Store Memory, Data Store Write, and Data Store Read. The former were used
to describe sequential algorithms, with bounded loops and nested If-else statements. We rewrote all
Matlab Function code into pure Simulink blocks. The latter where used as global variables: in general
Simulink model provides a hierarchical graphical view of the model but this structure is typically not
enforced. Our choice of using Lustre as an intermediate language imposes to maintain the hierarchy
of the model but also support modular analysis and therefore could address issues of scalability of the
formal verification. We transformed the signature of each component to propagate these signals along
modules, removing their global definitions.

Verification efficiency. In addition to making the model compatible with the toolchain, good mod-
eling practices could greatly support the CoOCOSIM analyses, such as setting the correct DataType
machines on the signals (e.g. boolean, double single, int8, etc). Moreover some blocks could be soundly
simplified. For instance, If-Else blocks (see Fig. @ can be substituted by Switch blocks when the Ac-
tion Subsystems linked to If-Else have no memory blocks (e.g Unit Delay) inside. In fact, Action
Subsystems are conditionally executed subsystems. It means that their execution is controlled by a
signal (in this case, their associated If-else condition). In Lustre, a conditionally executed subsystem
can be translated as the Lustre automaton presented below but the equivalent yet simpler expression
using Switch block (Fig. @ will be translated in Lustre as: out = if condition then S1(in)else
S2(in) ; The initial Lustre automaton would produce more variables, more clocks and local memories,
making the analysis more difficult.

automaton si

state S1_IS_Active: state S1_IS_INACTIVE:
unless (not condition) restart S1_IS_INACTIVE unless condition resume S1_IS_Active
let let
--call S1 subsystem; --reset or resume outputs previous values

tel tel

6 R. Cohen, H. Bourbouh, G. Brat, E. Feron and P.-L. Garoche

iu1>0)

T olse -

in1 Outt
In1 4‘1\
S1
2) >0

condition Outt

In1 Out1 0

Ss2

(a) If-else Block In Simulink (b) Equivalent version using Switch block

Fig. 6: Various encoding efficiency

Req. ID Simulink Component |Text

Req p63_ 1 Call Jet Select The two types of thrusters may not be used simultaneously

Req pl9 1| Auto Manual Switch |If the hand controller is deflected in any axis, the SDAP automatically
switches to manual mode

Req_ pl9 5|Auto Manual Maneuver| When the maneuver mode is changed from manual to auto, if the bypass
flag is ON, it is set to OFF and the auto maneuver initialization flag is
set to ON.

Req_p27_1|Auto Manual Maneuver|Auto Maneuver tests the rotation angle rotation angle delta_theta
against two numerical criteria. If rotation_angle delta_theta is larger
than y = SCALARBIAS + 2 % Deadband, the module places itself in
the maneuver mode; if rotation angle delta theta is less than z =
SCALARBIAS + Deadband, the hold mode results.

. . SLDV |SLDV |CoCoSim|Total |Lustre Gen.|Verification
Req. ID - |Simulink Component 7#blocks| p cult| Time [Result |Time| Time Time
Req p63 1|Call Jet Select 34 Valid | 27s Valid | 21s 19s 2s
Req pl9_ 1|Auto Manual Switch 8 Valid | T7s Valid 12s 10s 2s
Req_pl9 5|Auto Manual Maneuver 589 | Valid | 23s Valid | 34s 30 4s
Req_p27_1

Note that total time reported for CoOCOSiM is detailed as compilation time to Lustre and actual verification.
SLDV is the model-checking tool provided by MathWorks.
Table 1: Selection of requirements and verification results

4.2 V&V at model level, based on formalized requirements as Cocospec contracts.

Selected and formalized requirements were provided to the solvers and their property evaluated. While
this process can be troublesome, it is largely automated here, injecting the CoCoSpec requirements in
the model and applying model-checkers to the result Lustre model. Traceability maps allow to interpret
back the result at model level, in Simulink. Table [I] provides a very short overview of formalized
requirements and their proved validity.

The initial set of 49 requirements can be found at https://cavale.enseeiht.fr/spaceshuttle.

5 Conclusion

We presented an interesting use case: a closed loop description of the the attitude and orbital control
system of the Space Shuttle. All documentation, identified requirements and Simulink models are
available online. The work is only preliminary and the model could be still used for various activities:
computing attitude trajectories, performing control-level closed-loop analyses, or even floating point
accuracy verification.

https://cavale.enseeiht.fr/spaceshuttle

REFERENCES 7

References

1]
2]

3]

4]

5]

[6]

7]

18]

[9]

[10]

Patrick Baudin et al. ACSL: ANSI/ISO C Specification Language. frama-c.cea.fr/acsl.htmll
2008. URL: frama-c.cea.fr/acsl.htmll

Timothy Bourke et al. “A formally verified compiler for Lustre”. In: Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2017, Barcelona, Spain, June 18-23, 2017. 2017, pp. 586—601. DOI: [10.1145/3062341.3062358
URL: https://doi.org/10.1145/3062341.3062358,

Guillaume Brat et al. “Verifying the Safety of a Flight-Critical System”. In: FM 2015: Formal
Methods - 20th International Symposium, Oslo, Norway, June 24-26, 2015, Proceedings. 2015,
pp- 308-324. DOTI: |10.1007/978-3-319-19249-9_20. URL: https://doi.org/10.1007/978-
3-319-19249-9%5C_20.

Adrien Champion et al. “CoCoSpec: A Mode-Aware Contract Language for Reactive Systems”.
In: Software Engineering and Formal Methods - 14th International Conference, SEFM 2016,
Held as Part of STAF 2016, Vienna, Austria, July 4-8, 2016, Proceedings. 2016, pp. 347-366.
DOI: [10.1007/978-3-319-41591-8\ _24. URL: https://doi.org/10.1007/978-3-319-
41591-875C_24.

Adrien Champion et al. “The Kind 2 Model Checker”. In: Computer Aided Verification - 28th
International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part
1I. 2016, pp. 510-517. poOI: [10.1007/978-3-319-41540-6_29. URL: https://doi.org/10.
1007/978-3-319-41540-6%5C_29.

Arnaud Dieumegard et al. “Compilation of synchronous observers as code contracts”. In: SAC’15.
2015, pp. 1933-1939.

Nicolas Halbwachs, Fabienne Lagnier, and Pascal Raymond. “Synchronous Observers and the
Verification of Reactive Systems”. In: Algebraic Methodology and Software Technology (AMAST
’93), Proceedings of the Third International Conference on Methodology and Software Technol-
ogy, University of Twente, Enschede, The Netherlands, 21-25 June, 1993. 1993, pp. 83-96.

C. A. R. Hoare. “An Axiomatic Basis for Computer Programming”. In: Commun. ACM 12.10
(1969), pp. 576-580. DOI: |10.1145/363235.363259. URL: https://doi.org/10.1145/363235.
363259l

Xavier Leroy. “Formal certification of a compiler back-end, or: programming a compiler with
a proof assistant”. In: 83rd ACM symposium on Principles of Programming Languages. ACM
Press, 2006, pp. 42-54. URL: http://xavierleroy.org/publi/compiler-certif.pdf

John M. Rushby. “The Versatile Synchronous Observer”. In: Formal Methods: Foundations and
Applications - 15th Brazilian Symposium, SBMF 2012, Natal, Brazil, September 23-28, 2012.
Proceedings. 2012, p. 1. DOI: [10.1007/978-3-642-33296-8_1. URL: https://doi.org/10.
1007/978-3-642-33296-8%5C_1.

frama-c.cea.fr/acsl.html
frama-c.cea.fr/acsl.html
http://dx.doi.org/10.1145/3062341.3062358
https://doi.org/10.1145/3062341.3062358
http://dx.doi.org/10.1007/978-3-319-19249-9_20
https://doi.org/10.1007/978-3-319-19249-9%5C_20
https://doi.org/10.1007/978-3-319-19249-9%5C_20
http://dx.doi.org/10.1007/978-3-319-41591-8_24
https://doi.org/10.1007/978-3-319-41591-8%5C_24
https://doi.org/10.1007/978-3-319-41591-8%5C_24
http://dx.doi.org/10.1007/978-3-319-41540-6_29
https://doi.org/10.1007/978-3-319-41540-6%5C_29
https://doi.org/10.1007/978-3-319-41540-6%5C_29
http://dx.doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
http://xavierleroy.org/publi/compiler-certif.pdf
http://dx.doi.org/10.1007/978-3-642-33296-8_1
https://doi.org/10.1007/978-3-642-33296-8%5C_1
https://doi.org/10.1007/978-3-642-33296-8%5C_1

	Attitude Control of the Space Shuttle: A Retrospective Example on Model-Based Design and Verification Processes

